Алгебраические фокусы…

Добрый день!

Вы получаете задание:

напишите на листке любое трехзначное число, какое хотите.

Получите шестизначное число, состоящее из трех повторяющихся цифр.

Разделите это число на 7,

я предсказываю Вам, что остатка не получится!

Далее, разделите результат разделите на 11,

я утверждаю, что и оно разделится без остатка!

Полученный результат разделите на 13- и снова у Вас не будет остатка- и я это Вам предсказываю!!!

А дальше,  я предъявляю Вам число, которое Вы написали!!!!

Задумали лично, на большом расстоянии от меня!!

Чудо, никак не меньше!!!

После  первоначального преобразования Вашего трехзначного числа в шестизначное  и всех указанных делений  Вы получаете число, которое задумали! Правильно?? Правильно!!

Каково?

Чудо, не меньше!

Объяснение чуда, научное!

Имеем любое трехзначное число:

532

число с приписанными цифрами

532 532,

это число есть ничто иное, как первоначальное число, умноженное на 1001 (1000 и 1 магическая цифра!!, но о ней позднее…), т.е.

532х1000+532= 532 532                 1).

Доказано!

А число 1001 имеет особенность, помимо внешних данных:

оно делится без остатка ,

как Вы думаете, на какие числа, простые (!!) числа?

Конечно же, молодцы-это к самым догадливым,

на 7

на 11

на 13 !!!

На три последовательных простых числа, произведением которых оно и является!!!   2).

Следовательно,

учитвывая 1).

и 2).

Все наши преобразования приведут в первоначальному числу, ибо сначала мы умножим на 1001 (прибавив число к числу не суммой, а приписав, т.е. умножив на 1001, а потом, разделим на 1001!)

Только это будет известно нам,

а всем, с кем мы захотим поиграть в Волшебника и его ученика

НЕТ!!

И МЫ СОТВОРИМ ЧУДО!

Я призываю ВАС не только верить в ЧУДЕСА, но и творить их, учить близких и дорогих Вам людей  необходимости верить в ЧУДЕСА, и ТОГДА,

и только ТОГДА, к нам придут

настоящие ЧУДЕСА!!

Алгебраические комедии…

Алгебраические истории (Эварист Галуа)

СЧАСТЬЯ ВАМ,ГОСПОДА!!

Источники

1.  Я.И.Перельман.  Занимательная арифметика.

2. фото- http://toget.ru/news_pics/136977_Zabavnaya_matematika_(4_foto).jpg

Статистика

Рейтинг блоговРейтинг блоговРейтинг блогов